
RPL: A Road Planning Language.

FYP Review Report - 2015

B.Sc. Software Development (Hons)

Daniel Desira – 243093(M)

Table of Contents
1. Abstract..1
2. Introduction and Background..1
3. Aims and Objectives..2
4. Design..2
5. Implementation..4
6. Results and Evaluation..5
7. Conclusions and Future Work...6
8. Bibliography..7

RPL: A Road Planning Language.

1. Abstract

Road systems have for ages provided a means of efficient transportation. However, traffic

congestion has become more common as growth in human population and economic activity

where experienced, bringing several social, environmental, health and economic issues.

RPL's main aim is to allow for the modeling and simulation of road systems, in order to help find

ways in which congestion and hence its effects may be minimised. Being a DSL, the solution offers

a user-friendly method of analysing road's performance under a specific set of parameters, since

the user is alleviated from the graph and queuing theory behind, shifting their focus on

constructing the road network.

2. Introduction and Background

Over the years, road systems have provided a

more efficient means of transportation, but as

human populations and economic activity have

started to grow, roads have seen a dramatic

increase in traffic density[1], rendering the

system counter-intuitive. Traffic flow

management and proper road planning have

since then been sought after by governments

and road planning authorities.

Traffic congestion causes driver inconvenience

and frustration as well as higher fuel

consumption, adding to the driver's frustration

as well as air pollution. This higher pollution of

air has been linked to fatal diseases and

financial burden due to the need for more

emphasis on health-care.[2] Moreover, the

construction of new roads and maintenance of

existing ones is expensive in terms of both

public funds and land use, hence the most

worthwhile network changes should be

determined in order to cut on these costs.

More road accidents and fatalities happen due

to traffic congestion, making people feel unsafe

on the road. The longer commutes resulting

from congestion are also said to contribute to

Page 1 of 7

obesity.[3]

3. Aims and Objectives
The project's main objective is to enable better

planning of maintenance to road systems

in order to improve their capability in

handling the increasing demand, due to

more accurate analysis on the effects that

some change would have on traffic flow

across the road network.

4. Design

The proposed solution is a language that

models road systems and allows for a

simulation of what happens to an

existing road network with a set of

parameters and how the system would

behave if a modification is performed.

The road system is modeled by

constructing a graph, while simulation is

handled through the use of M/M/11

queues. Graph creation and manipulation is in

turn handled by the JGraphT library and the

details of simulation are taken care of by PDQ2,

1 a queuing system having a single server, where
arrivals have a Poisson disribution and job service
times have an exponential distribution

2 Pretty Damn Quick

a tool focused on computer-based

performance analysis. The diagram that

follows demonstrates the connection between

the various components from a top-level

perspective:

Figure 1: Solution top-level block diagram

The proposed language consists of several
constructs that help represent roads, their
connections and three of the most common
road elements: roundabouts, T-junctions and
crossroads. It also assumes a two-way road

Page 2 of 7

system and allows for the definition of
various parameters such as the number of
lanes in a street. Below is the language's
definition in EBNF style:

model = constructNetwork, definitions,
runSimulation, [modifications];

constructNetwork = "construct",
"network", identifier, "(";

definitions = createRoad, { attachRoad |
crossroad | roundabout | createRoad },
")";
createRoad = "create", "primary",
"road", identifier, "with", "length",
floatingPointNumber, "left", "has",
"vehicles", (wholeNumber | "?"),
"arrival", "rate", (floatingPointNumber
| "?"), "right", "has", "vehicles",
(wholeNumber | "?"), "arrival", "rate",
(floatingPointNumber | "?"), ["lanes",
wholeNumber];
attachRoad = "attach", ("primary" |
"secondary"), "road", identifier,
"with", "length", floatingPointNumber,
["to", identifier], "at",
floatingPointNumber, "left", "has",
"vehicles", (wholeNumber | "?"),
"arrival", "rate", (floatingPointNumber
| "?"), "right", "has", "vehicles",
(wholeNumber | "?"), "arrival", "rate",
(floatingPointNumber | "?"), ["lanes",
wholeNumber];
crossroad = "crossroad", identifier,
"at", floatingPointNumber, "with",
identifier, "at", floatingPointNumber;
roundabout = "roundabout", "on",
identifier, "at", floatingPointNumber,
"exit", "rate", floatingPointNumber;

blockRoad = "block", identifier;

change = "change", identifier, "lanes",
wholeNumber;

runSimulation = "run", "simulation",
"for", "minutes", floatingPointNumber;

modifications = { blockRoad | change |

roundabout }+, "rerun";

The proposed road elements are representable

through graphs and the following graph

translation scheme has been chosen:

Figure 2: T-junction

Figure 3: Crossroads

Figure 4: Minimal roundabout

The core functionality is called by the language

so as to model the intended road system

Page 3 of 7

effectively. In RPL's case, the functionality is

implemented by calling methods from JGraphT

and PDQ, as illustrated by the following table:

Statement/Constru
ct

Procedure Call

construct Network
<network_name>

network = new
DirectedGraph()

create|attach
primary|secondary
road <road_name>

v1 =
network.addVertex(
)
v2 =
network.addVertex(
)
network.addEdge(v1
, v2)

block <road_name> network.removeEdge
(v1, v2)

OR
network.removeEdge
(e)

add semaphore|
traffic light|
zebra crossing|……
at <road_name>
<position(integer
)>

network.addVertex(
…)

Divide the edge in

two.

attach secondary
road <road_name>
two way

Create 2 M/M/1

queues using PDQ
construct network
<network_name>
(……) [construct
network
<network_namex>
(…….)]* simulate
*|
<network_name>[,
<network_namex>]*

PDQ-based model

should take care of

the simulation

process, after the

graph is built:

pdq = new PDQ
pdq.Init(modelName
)
pdq.CreateNode(…)
pdq.CreateClosed(…
)
pdq.Solve(….)
pdq.Report()

Simulate …. given
<amount> vehicles
in <road_name> [,
<amount> vehicles
in <road_name>]*

pdq.CreateClosed(…
)

5. Implementation

RPL is written in Scala because of the

language's expressiveness in that both Object-

Oriented and functional styles may be used.

The language is implemented through the use

of Scala Parser Combinators. Besides being

usable through SBT, this library provides the

advantage of enabling developers to define

parsers functionally, such that the

implementation is similar to the model's EBNF

representation.[4]

JGraphT allows for easier manipulation of

graphs, simplifying the solution's graph

generation logic.

On the other hand, PDQ is library that allows

for simulation based on M/M/1 queues. RPL

uses the closed-circuit queuing system due to

traffic flow's finite nature. It is worth-

mentioning that PDQ works similar to a DSL

whereby one is expected to define a model

describing the queue(s) to be initialised along

with their servers. This renders PDQ's

operation imperative and hence calls to its

Page 4 of 7

functions may be easily encapsulated in a few

methods.[5]

The class diagram below displays a simple

overview of the relationships between classes

and objects and some of the library code called

by RPL:

Figure 5: Solution class diagram

6. Results and Evaluation

RPL is capable of representing road systems in

a rather accurate manner, allowing for three of

the most commonly occurring road elements

so as to make the process more realistic.

In the model that follows, two roads are

attached at the ends of the main street, while

one is attached in between the ends forming a

T-junction:

construct network zabbar_primaries (
create primary road sanctuary_road

with length 700 left has vehicles 10
arrival rate 9.2 right has vehicles 2
arrival rate 0

attach primary road hompesch_road
with length 800 at 700 left has vehicles
30 arrival rate 22.5 right has vehicles
3 arrival rate 0 lanes 1

attach primary road
marsascala_old_road with length 1600 at
200 left has vehicles 8 arrival rate 6.9
right has vehicles 4 arrival rate 0

attach primary road barun_road
with length 300 at 0 left has
vehicles 7 arrival rate 7.6 right
has vehicles 2 arrival rate 0
)

run simulation for minutes 1

Figure 6: Road attachment test

The following example shows the

implementation of a crossroads together with

the resulting graph:

construct network crossroad_test (
create primary road triq_farfett

with length 200 left has vehicles 0
arrival rate 0 right has vehicles 0
arrival rate 0

create primary road triq_qattus
with length 230 left has vehicles 0

Page 5 of 7

arrival rate 0 right has vehicles 0
arrival rate 0

crossroad triq_farfett at 90 with
triq_qattus at 117.5
)
run simulation for minutes 1

Figure 7: Crossroads test

Moreover, one is also somehow allowed to
define roundabouts in their models, as in the
RPL program that follows:

construct network roundabout_test (
create primary road abc with

length 300 left has vehicles 0 arrival
rate 0 right has vehicles 0 arrival rate
0

roundabout on abc at 150 exit rate
0
)
run simulation for minutes 1

Figure 8: Roundabout test

By allowing the user to compare the

performance of an existing road system with

that of the resulting system after a set of

changes, the proposed solution helps

to improve the road construction

and traffic flow management process

and alleviate the pain associated to

traffic congestion.

Moreover, the system allows for the

omission of certain parameters in

order for those parameters to be

input on demand, rendering the

solution more adaptable to changes

in traffic flow reflected by changes in

human population and economic activity.

7. Conclusions and Future Work

The solution proves that road systems may be

modeled using a DSL, given that the

appropriate algorithms and data structures

are implemented behind the scenes.

The solution may be improved by

supporting more road elements such as

zebra crossing, traffic lights and others, re-

factoring the project to act as a REST API3 and

3 Web Service based on the REST architecture

Page 6 of 7

a web client that displays a more graphical

representation of the various statistics as well

as helping to better identify bottlenecks.

8. Bibliography
[1] A. Dawns. “Traffic: Why It's Getting Worse, What Government Can Do.“ Internet:
http://www.brookings.edu/research/papers/2004/01/01transportation-downs, Jan, 2004 [Aug. 30,
2015].

[2] K. Dalli. “Polution now killing 230 people every year.” Internet:
http://www.timesofmalta.com/articles/view/20150429/local/pollution-now-killing-230-
people-every-year.565997, Apr. 29, 2015 [Aug. 15, 2015].

[3] Dr. J. P. Rodrigue. (2013). The Geography of Transport Systems. (3rd edition). [On-line]. “Urban
Transport Challenges.” Available:
https://people.hofstra.edu/geotrans/eng/ch6en/conc6en/ch6c4en.html [May 3, 2015].

[4] D. Ghosh. “External DSLs made easy with Scala Parser Combinators”. Internet:

http://debasishg.blogspot.com/2008/04/external-dsls-made-easy-with-scala.html, Apr. 14, 2008

[May 10, 2015]

[5] “PDQ: Pretty Damn Quick.” Internet: http://www.perfdynamics.com/Tools/PDQ.html [Aug.

21, 2015]

Page 7 of 7

http://www.perfdynamics.com/Tools/PDQ.html
http://debasishg.blogspot.com/2008/04/external-dsls-made-easy-with-scala.html
https://people.hofstra.edu/geotrans/eng/ch6en/conc6en/ch6c4en.html
http://www.timesofmalta.com/articles/view/20150429/local/pollution-now-killing-230-people-every-year.565997
http://www.timesofmalta.com/articles/view/20150429/local/pollution-now-killing-230-people-every-year.565997
http://www.brookings.edu/research/papers/2004/01/01transportation-downs

	RPL: A Road Planning Language.
	1. Abstract
	2. Introduction and Background
	3. Aims and Objectives
	4. Design

	Figure 2: T-junction
	Figure 3: Crossroads
	Figure 4: Minimal roundabout
	The core functionality is called by the language so as to model the intended road system effectively. In RPL's case, the functionality is implemented by calling methods from JGraphT and PDQ, as illustrated by the following table:
	5. Implementation
	6. Results and Evaluation
	7. Conclusions and Future Work
	8. Bibliography

